Ces radiol. 2017, 71(4):243-259 | DOI: 10.55095/CesRadiol2017/035

Magnetic resonance clinical systems: development during last 30 years and new trendsReview article

Jaroslav Tintěra
Základna radiodiagnostiky a intervenční radiologie, Institut klinické a experimentální medicíny, Praha

This article contributes to 30. years anniversary of the first installation of the very first Czechoslovak magnetic resonance system (MR). It makes an effort to map some important local and global mile stones over three decade's long exciting way of clinical and scientific application of this amazing method. Albeit the contribution has not typical educative character it explains some basic physical relations which considerably formed the effort and the development of all parts of MR system. Therefore also this article is structured to cover the development of all MR components in historical context. But not to staying only in history the next important aspect is to bring a survey about today's modern capabilities of MR systems as well as to introduce new perspectives for future years.

Keywords: magnetic resonance, MRI, MR system, gradient system, RF system
Grants and funding:

Podpořeno MZ ČR - RVO (Institut klinické a experimentální medicíny - IKEM, IČ 00023001).

Accepted: November 15, 2017; Published: December 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tintěra J. Magnetic resonance clinical systems: development during last 30 years and new trends. Ces radiol. 2017;71(4):243-259. doi: 10.55095/CesRadiol2017/035.
Download citation

References

  1. Tintěra J. MR zobrazování s magnetickým polem 3 T: Teoretické aspekty a praktická srovnání s 1,5 T. Ces Radiol 2008; 62(3): 233-243.
  2. Kimmlingen R. Pioneers of connectome gradients. Magnetom FLASH 2017; 68(2): 122-136.
  3. Sodicson DK, Grisworld MA, Jakob PM. SMASH imaging. MRI Clin N Am 1999; 7(2): 237-254. Go to original source...
  4. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962. Go to original source...
  5. Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength - an experimental investigation using electrodynamic scaling. Magn Reson Med 2004; 52(5): 953-964. Go to original source... Go to PubMed...
  6. Pohman R, Shajan G et al. Imaging and spectroscopy at 9.4 Tesla: First results on patients and volunteers. Magnetom FLASH 2013; 52(2): 58-67.
  7. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP, a new fast MRI sequence. Electromedica (Engl Ed) 1986; 54: 15-18.
  8. Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD. FLASH imaging: rapid NMR imaging using low flip angle pulses. Journal of Magnetic Resonance 1986; 67 (2): 258-266. Go to original source...
  9. Cuppen J, van Est A. Reducing MR imaging time by one-sided reconstruction. Magn Reson Imaging 1987; 5: 526-527. Go to original source...
  10. Gyngell ML. The application of steady-state free precession in rapid 2DFT NMR imaging: FAST and CE-FAST sequences. Magn Reson Imaging 1988; 6: 415-419. Go to original source... Go to PubMed...
  11. Hennig J, Nauerth A, Friedburg H. RARE imaging: A fast imaging method for clinical MR. Magn Reson Med 1986; 3 (6): 823-833. Go to original source... Go to PubMed...
  12. Hajnal JV, Bryant DJ, Kasuboski L. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16: 841-844. Go to original source... Go to PubMed...
  13. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210. Go to original source... Go to PubMed...
  14. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005; 53: 684-691. Go to original source... Go to PubMed...
  15. Breuer FA, Kannengiesser SAR, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med 2009; 62: 739-746. Go to original source... Go to PubMed...
  16. Breuer F, Blaimer M, Griswold M, Jacob P. CAIPIRINHA - Revisited. Magnetom FLASH 2015; 63(3): 8-15.
  17. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618. Go to original source... Go to PubMed...
  18. Schweser F, Deistung A, Lehr BW, Reichenbach J. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Medical Physics 2010; 37 (10): 5165-5178. Go to original source... Go to PubMed...
  19. Vymazal J, Klempíř J, Jech R, Židovská J, Syka M, Růžička E, Roth J. MR relaxometry in Huntington's disease: Correlation between imaging, genetic and clinical parameters. Journal of the Neurological Sciences 2007; 263: 20-25. Go to original source... Go to PubMed...
  20. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature 2013; 495(7440): 187-192. Go to original source... Go to PubMed...
  21. Cauley SF, Setsompop K, Ma D, Jiang Y, Ye H, Adalsteinsson E, Griswold MA, Wald LL. Fast group matching for MR fingerprinting reconstruction. Magn Reson Med 2015; 74(2): 523-528. Go to original source... Go to PubMed...
  22. Coppo S, Mehta BB, et al. Overview of magnetic resonance fingerprinting. Magnetom FLASH 2016; 65(2): 12-21.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.