Ces radiol. 2014, 68(1):16-21

Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in multiple myeloma diagnosisOriginal article

Jana Sedláková1, Miloš Keřkovský1, Tomáš Pavlík2, Marek Mechl1
1 Radiologická klinika FN MU, Brno
2 Institut biostatistiky a analýz LF MU, Brno

Aim: Diffusion-weighted imaging is a useful sequence, which helps to determine the nature of pathology found on T1 and T2 weighted images in examination of oncologic patients. We compared T1 weighted and STIR images with diffusion weigted whole body imaging (DWIBS). We also tested possibility of DWIBS quantification.

Method: Data from studies made between May 2007 and October 2012 with the whole-body protocol on a device Philips Achieva 1,5T were analysed retrospectively and 106 patients with multiple myeloma or monoclonal gamapathy of unknown significance (MGUS) were included.
We compared the number of lesions found on T1 weighted and STIR images and DWIBS. Patients were then divided into two groups - the first group of patients with negative findings on T1-weighted and STIR images, and the other with a no pathological signal on these sequences. In the first group we compared signal intensity from the right hip and fifth lumbar vertebra to the signal intensity of kidney, spleen and liver, in the second group a signal intensity of leasions to signal intensity of these organs.
An arithmetic mean, standard deviation, median, minimum, maximum and McNemar and Wilcoxon tests were used to identify characteristics and differences between T1 weighted and STIR images and DWIBS. Mann-Whitney test was used to identify differences of signal ratio in DWIBS between reference group and group with lesions.

Results: The analysis of T1 wighted imaging + STIR and DWIBS examinations showed that DWIBS is more sensitive (Wilcoxon test, p < 0.001). In evaluation of signal ratio to liver, kidney and spleen, there was significant difference between reference group and group with lesions on T1 weighted imaging and STIR (p < 0.001).

Conclusion: DWIBS is more sensitive than T1 weighted imaging and STIR images, one of possible ways to reach higher specificity could be comparison of the signal ratio to liver, kidney or spleen.

Keywords: magnetic resonance, whole body imaging, diffusion weighted imaging with backround body signal supression, multiple myeloma

Accepted: September 1, 2013; Published: March 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sedláková J, Keřkovský M, Pavlík T, Mechl M. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in multiple myeloma diagnosis. Ces radiol. 2014;68(1):16-21.
Download citation

References

  1. Mechl M, Neubauer J, Krejčiřík P, Sedláková J. Celotělové vyšetření pomocí magnetické rezonance se zobrazením difuze u nemocných s mnohočetným myelomem - první zkušenosti. Čes Radiol 2007; 61(4): 364-369.
  2. Heřman M, Hrbek J, Ščudla V, Bačovský J, Pika T, Minařík J. Korelace nálezů celotělové MR se stážovacím systémem Durie/Salmon u pacientů s monoklonální gamapatií nejistého významu a mnohočetným myelomem. Čes Radiol 2010; 64(3): 203-212.
  3. Kreuzberg B, Ferda J. Celotělové vyšetření magnetickou rezonancí. Čes Radiol 2007; 61(4): 351-363.
  4. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004; 22(4): 275-282.
  5. Sommer G, Wiese M, Winter L, Lenz C, Klarhöfer M, Forrer F, et al. Preoperative staging of non-small-cell lung cancer: comparison of whole-body diffusion-weighted magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol 2012; 22(12): 2859-2867. Go to original source... Go to PubMed...
  6. Kachewar SG. Using DWIBS MRI technique as an alternative to bone scan or PET scan for whole-body imaging in oncology patients. Acta Radiol Stockh Swed 1987 2011; 52(7): 788. Go to original source... Go to PubMed...
  7. Kwee TC, Takahara T, Ochiai R, Nievelstein RAJ, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008; 18(9): 1937-1952. Go to original source... Go to PubMed...
  8. Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol 2009; 70(3): 409-417. Go to original source... Go to PubMed...
  9. Li S, Sun F, Jin Z-Y, Xue H-D, Li M-L. Whole-body diffusion-weighted imaging: technical improvement and preliminary results. J Magn Reson Imaging JMRI 2007; 26(4): 1139-1144. Go to original source... Go to PubMed...
  10. Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagi H, Ogura Y, et al. 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med 2007; 21(4): 209-215. Go to original source... Go to PubMed...
  11. Niikura N, Costelloe CM, Madewell JE, Hayashi N, Yu T-K, Liu J, et al. FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 2011; 16(8): 1111-1119. Go to original source... Go to PubMed...
  12. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 2010; 39(4): 333-343. Go to original source... Go to PubMed...
  13. Stecco A, Lombardi M, Leva L, Brambilla M, Negru E, Delli Passeri S, et al. Diagnostic accuracy and agreement between whole-body diffusion MRI and bone scintigraphy in detecting bone metastases. Radiol Med (Torino) 2013; 118(3): 465-475. Go to original source... Go to PubMed...
  14. Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol 2009; 193(1): 14-27. Go to original source... Go to PubMed...
  15. Taouli B, Koh D-M. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254(1): 47-66. Go to original source... Go to PubMed...
  16. Lee HJ, Luci JJ, Tantawy MN, Lee H, Nam KT, Peterson TE, et al. Detecting peritoneal dissemination of ovarian cancer in mice by DWIBS. Magn Reson Imaging 2013; 31(2): 227-234. Go to original source... Go to PubMed...
  17. Kyriazi S, Collins DJ, Morgan VA, Giles SL, deSouza NM. Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer. Radiogr Rev Publ Radiol Soc North Am Inc 2010; 30(5): 1269-1285. Go to original source... Go to PubMed...
  18. Cafagna D, Rubini G, Iuele F, Maggialetti N, Notaristefano A, Pinto D, et al. Whole-body MR-DWIBS vs. [18F]-FDG-PET/CT in the study of malignant tumors: a retrospective study. Radiol Med (Torino) 2012; 117(2): 293-311. Go to original source... Go to PubMed...
  19. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A, Iyer VK, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol Stockh Swed 1987 2012; 53(3): 349-358. Go to original source... Go to PubMed...
  20. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A. Diffusion-weighted MRI in inflammatory renal lesions: all that glitters is not RCC! Eur Radiol 2013; 23(1): 272-279. Go to original source... Go to PubMed...
  21. El-Assmy A, Abou-El-Ghar ME, Refaie HF, Mosbah A, El-Diasty T. Diffusion-weighted magnetic resonance imaging in follow-up of superficial urinary bladder carcinoma after transurethral resection: initial experience. BJU Int 2012; 110(11 Pt B): E622-627. Go to original source... Go to PubMed...
  22. Satoh Y, Ichikawa T, Motosugi U, Kimura K, Sou H, Sano K, et al. Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol. 2011; 196(2): 447-453. Go to original source... Go to PubMed...
  23. Lee NK, Kim S, Kim GH, Kim DU, Seo HI, Kim TU, et al. Diffusion-weighted imaging of biliopancreatic disorders: correlation with conventional magnetic resonance imaging. World J Gastroenterol WJG 2012; 18(31): 4102-4117. Go to original source... Go to PubMed...
  24. Padhani AR, van Ree K, Collins DJ, D'Sa S, Makris A. Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 2013; 200(1): 163-170. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.