Ces radiol. 2021, 75(4):278-284 | DOI: 10.55095/CesRadiol2021/034

The role of MR volumetry in the management of multiple sclerosisReview article

Peter Mikula1, Miroslav Malík1, Pavol Filippi2, Martin Karlík3, Zuzana Lišková4, Magdaléna Mižičková1, Vladimír Javorka1, Jana Poláková Mištinová1
1 Rádiologická klinika LF UK, SZU a UNB, Bratislava, SR
2 I. neurologická klinika LF UK a UNB, Bratislava, SR
3 II. neurologická klinika LF UK a UNB, Bratislava, SR
4 Rádiológia s.r.o., Bratislava, SR

Measurement of cerebral and spinal cord atrophy using MR volumetry in patients with multiple sclerosis (MS) has become an important output from clinical trials in recent years. The degree of atrophy, which can also be understood as an indicator of neurodegeneration, enables the determination of the risk of disability and cognitive impairment, and thus predict the course of the disease. Considering the clear impact of early diagnosis and treatment of MS, determining the degree of atrophy at an early stage of the disease may be crucial. Volumetric analyses can also be used to monitor the effects of MS treatment, as several drugs significantly slow down the loss of brain and spinal cord tissue. To establish the degree of atrophy, automated, semi-automated, and manual volumetric methods are used. These methods involve multiple technical limitations and also introduce large variability in the measurement methodology. Therefore, in clinical practice, the application of volumetric data in a specific patient cases needs to be approached with caution. The aim of the authors is a clear summary of current knowledge, benefits, and limitations of MR volumetric tools in the course and treatment of MS.

Keywords: sclerosis multiplex, brain atrophy, magnetic resonance, volumetry

Accepted: December 15, 2021; Published: December 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mikula P, Malík M, Filippi P, Karlík M, Lišková Z, Mižičková M, et al.. The role of MR volumetry in the management of multiple sclerosis. Ces radiol. 2021;75(4):278-284. doi: 10.55095/CesRadiol2021/034.
Download citation

References

  1. Sastre-Garriga J, Pareto D, Battaglini M, et al. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat Rev Neurol 2020; 16(3): 171-182. doi: 10.1038/s41582-020-0314-x Go to original source... Go to PubMed...
  2. Rocca MA, Battaglini M, Benedict RHB, et al. Brain MRI atrophy quantification in MS. Neurology 2017; 88(4): 403-413. doi: 10.1212/WNL.0000000000003542. Go to original source... Go to PubMed...
  3. de Stefano N, Narayanan S, Francis GS, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001; 58(1): 65-70. doi: 10.1001/archneur.58.1.65 Go to original source... Go to PubMed...
  4. Cheriyan J, Kim S, Wolansky LJ, et al. Impact of inflammation on brain volume in multiple sclerosis. Arch Neurol 2012; 69(1): 82-88. doi: 10.1001/archneurol.2011.674 Go to original source... Go to PubMed...
  5. Uher T, Krasensky J, Sobisek L, et al. The Role of High-Frequency MRI Monitoring in the Detection of Brain Atrophy in Multiple Sclerosis. J Neuroimaging 2018; 28(3): 328-337. doi:10.1111/jon.12505 Go to original source... Go to PubMed...
  6. Reuter M, Tisdall MD, Qureshi A, et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage 2015; 107: 107-115. doi: 10.1016/j.neuroimage.2014.12.006 Go to original source... Go to PubMed...
  7. Salat DH, Buckner RL, Snyder AZ, et al. Thinning of the cerebral cortex in aging. Cereb Cortex 2004; 14(7): 721-730. doi: 10.1093/cercor/bhh032 Go to original source... Go to PubMed...
  8. Figueira FFA, Dos Santos VS, Figueira GMA, et al. Corpus callosum index: A practical method for long-term follow-up in multiple sclerosis. Arq Neuropsiquiatr 2007; 65(4A): 931-935. doi: 10.1590/S0004-282X2007000600001 Go to original source... Go to PubMed...
  9. Gonçalves LI, dos Passos GR, Conzatti LP, et al. Correlation between the corpus callosum index and brain atrophy, lesion load, and cognitive dysfunction in multiple sclerosis. Mult Scler Relat Disord 2018; 20: 154-158. doi: 10.1016/j.msard.2018.01.015 Go to original source... Go to PubMed...
  10. Fujimori J, Uryu K, Fujihara K, et al. Measurements of the corpus callosum index and fractional anisotropy of the corpus callosum and their cutoff values are useful to assess global brain volume loss in multiple sclerosis. Mult Scler Relat Disord 2020; 45. doi: 10.1016/j.msard.2020.102388 Go to original source... Go to PubMed...
  11. Cappelle S, Pareto D, Tintoré M, et al. A validation study of manual atrophy measures in patients with Multiple Sclerosis. Neuroradiology 2020; 62(8): 955-964. doi: 10.1007/s00234-020-02401-3 Go to original source... Go to PubMed...
  12. Pontillo G, Cocozza S, Di Stasi M, et al. 2D linear measures of ventricular enlargement may be relevant markers of brain atrophy and long-term disability progression in multiple sclerosis. Eur Radiol 2020; 30(7): 3813-3822. doi: 10.1007/s00330-020-06738-4 Go to original source... Go to PubMed...
  13. Battaglini M, Gentile G, Luchetti L, et al. Lifespan normative data on rates of brain volume changes. Neurobiol Aging 2019; 81: 30-97. doi: 10.1016/j.neurobiolaging.2019.05.010 Go to original source... Go to PubMed...
  14. Pérez-Miralles F, Sastre-Garriga J, Tintoré M, et al. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler J 2013; 19(14): 1878-1886. doi: 10.1177/1352458513488231 Go to original source... Go to PubMed...
  15. Rocca MA, Sormani MP, Rovaris M, et al. Long-term disability progression in primary progressive multiple sclerosis: A 15-year study. Brain 2017; 140(11): 2814-2819. doi: 10.1093/brain/awx250 Go to original source... Go to PubMed...
  16. Uher T, Bergsland N, Krasensky J, et al. Interpretation of Brain Volume Increase in Multiple Sclerosis. J Neuroimaging 2021; 31(2): 401-407. doi: 10.1111/jon.12816 Go to original source... Go to PubMed...
  17. Jacobsen C, Hagemeier J, Myhr KM, et al. Brain atrophy and disability progression in multiple sclerosis patients: A 10-year follow-up study. J Neurol Neurosurg Psychiatry 2014; 85(10): 1109-1115. doi: 10.1136/jnnp-2013-306906 Go to original source... Go to PubMed...
  18. Engl C, Tiemann L, Grahl S, et al. Cognitive impairment in early MS: contribution of white matter lesions, deep grey matter atrophy, and cortical atrophy. J Neurol 2020; 267(8): 2307-2318. doi: 10.1007/s00415-020-09841-0 Go to original source... Go to PubMed...
  19. Hänninen K, Viitala M, Paavilainen T, et al. Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Front Neurol 2020; 11. doi: 10.3389/fneur.2020.00606 Go to original source... Go to PubMed...
  20. Vaněčková M, Krásenský J, Horáková D, et al. Měření atrofie corpus callosum a porovnání s ostatními metodami monitorace roztroušené sklerózy. Ces Slov Neurol N 2012; 75/108(6): 742-747.
  21. Uher T, Vaneckova M, Krasensky J, et al. Pathological cut-offs of global and regional brain volume loss in multiple sclerosis. Mult Scler J 2019; 25(4): 541-553. doi: 10.1177/1352458517742739 Go to original source... Go to PubMed...
  22. Petrova N, Carassiti D, Altmann DR, et al. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol 2018; 28(3): 334-348. doi: 10.1111/bpa.12516 Go to original source... Go to PubMed...
  23. Tsagkas C, Magon S, Gaetano L, et al. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology 2018; 91(4): e349-358. doi: 10.1212/WNL.0000000000005853 Go to original source... Go to PubMed...
  24. Schlaeger R, Papinutto N, Zhu AH, et al. Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 2015; 72(8): 897-904. doi: 10.1001/jamaneurol.2015.0993 Go to original source... Go to PubMed...
  25. Gasperini C, Prosperini L, Tintoré M, et al. Unraveling treatment response in multiple sclerosis: A clinical and MRI challenge. Neurology 2019; 92(4): 180-192. doi: 10.1212/WNL.0000000000006810 Go to original source... Go to PubMed...
  26. Sormani MP, Kappos L, Radue EW, et al. Defining brain volume cutoffs to identify clinically relevant atrophy in RRMS. Mult Scler 2017; 23(5): 656-664. doi: 10.1177/1352458516659550 Go to original source... Go to PubMed...
  27. Sormani MP, Arnold DL, de Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol 2014; 75(1): 43-49. doi: 10.1002/ana.24018 Go to original source... Go to PubMed...
  28. Filippi M, Rovaris M, Inglese M, et al. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet 2004; 364(9444): 1489-1496. doi: 10.1016/S0140-6736(04)17271-1 Go to original source... Go to PubMed...
  29. Comi G, Martinelli V, Rodegher M, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler J 2013; 19(8): 1074-1083. doi: 10.1177/1352458512469695 Go to original source... Go to PubMed...
  30. Miller DH, Soon D, Fernando KT, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology 2007; 68(17): 1390-1401. doi: 10.1212/01.wnl.0000260064.77700.fd Go to original source... Go to PubMed...
  31. Branger P, Parienti JJ, Sormani MP, et al. The effect of disease-modifying drugs on brain atrophy in relapsing-remitting multiple sclerosis: A meta-analysis. PLoS One 2016; 11(3). doi: 10.1371/journal.pone.0149685 Go to original source... Go to PubMed...
  32. Kalincik T, Kubala Havrdova E, Horakova D, et al. Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J Neurol Neurosurg Psychiatry 2019; 90(4): 458-468. doi: 10.1136/jnnp-2018-319831 Go to original source... Go to PubMed...
  33. Preziosa P, Rocca MA, Pagani E, et al. Two-year regional grey and white matter volume changes with natalizumab and fingolimod. J Neurol Neurosurg Psychiatry 2020; 91(5): 493-502. doi: 10.1136/jnnp-2019-322439 Go to original source... Go to PubMed...
  34. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012; 380(9856): 1819-1828. doi: 10.1016/S0140-6736(12)61769-3 Go to original source... Go to PubMed...
  35. Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 2010; 9(7): 681-688. doi: 10.1016/S1474-4422(10)70131-9 Go to original source... Go to PubMed...
  36. Kalkers NF, Barkhof F, Bergers E, et al. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: A pilot study. Mult Scler 2002; 8(6): 532-593. doi: 10.1191/1352458502ms849xx Go to original source... Go to PubMed...
  37. ScanView.CZ [online]. Dostupné z: www.scanview.cz (accessed October 4, 2021).
  38. Icobrain ms report for MRI [online]. Dostupné z: https://icometrix.com/services/icobrain-ms (accessed October 4, 2021).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.