Ces radiol. 2016, 70(4):219-227 | DOI: 10.55095/CesRadiol2016/029

Hybrid imaging of liver and pankreas using PET/MRIReview article

Jiří Ferda, Eva Ferdová, Jan Baxa
Klinika zobrazovacích metod LF UK a FN, Plzeň

Hybrid imaging using PET/MRI in liver and pancreas uses the enhanced tissue contrast of magnetic resonance including dynamic enhancement using gadolinium based contrast agent with early extracellular and late hepatospecific distribution with addition of the evaluation of the metabolic activity of the tissues. The possibility of the synchronous data acquisition with the breathing movements improves the detectability of the presence and level of the metabolic activity within the lesions. 18F-fluorodeoxyglucose is being an optimal radiopharmaceutical in detection and follow-up of the liver metastases and cholangiogenous tumors. The hepatocellular carcinoma imaging could be based both on the 18F-fluorodeoxyglucose and 18F-fluorocholine. I tis the advantage to combine magnetic resonance and positron emission tomography in patients with pancreatic tumors, including the assessment of the behavior and in the evaluation of the staging of the tumor, especially in cases when the hepatic metastases of pancreatic tumors should be excluded. In tumors of neuroendocrine origin even in pancreatic or liver secondary tumors, the useful radiopharmaceutical is 18F-fluorodihydroxyphenylalanine.

Keywords: hybrid imaging, PET/MRI, liver tumors, pancreatic tumors
Grants and funding:

Podpořeno projektem Ministerstva zdravotnictví ČR Koncepční rozvoj výzkumné instituce 00669806 - FN Plzeň a Programem rozvoje vědních oborů Karlovy Univerzity (projekt P36).

Accepted: December 15, 2016; Published: December 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ferda J, Ferdová E, Baxa J. Hybrid imaging of liver and pankreas using PET/MRI. Ces radiol. 2016;70(4):219-227. doi: 10.55095/CesRadiol2016/029.
Download citation

References

  1. Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol 2014; 83(1): 84-94. Go to original source... Go to PubMed...
  2. Fraum TJ, Fowler KJ, McConathy J, Parent EE, Dehdashti F, Grigsby PW, Siegel BA. PET/MRI for the body imager: abdominal and pelvic oncologic applications. Abdom Imaging 2015; 40(6): 1387-1404. Go to original source... Go to PubMed...
  3. Ruhlmann V, Ruhlmann M, Bellendorf A, Grueneisen J, Sawicki LM, Grafe H, Forsting M, Bockisch A, Umutlu L. Hybrid imaging for detection of carcinoma of unknown primary: A preliminary comparison trial of whole-body PET/MRI versus PET/CT. Eur J Radiol 2016; 85(11): 1941-1947. Go to original source... Go to PubMed...
  4. Blanchet EM, Millo C, Martucci V, Maass-Moreno R, Bluemke DA, Pacak K. Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol. Clin Nucl Med 2014; 39(3): 243-250. Go to original source... Go to PubMed...
  5. Mayerhoefer ME, Ba-Ssalamah A, Weber M, Mitterhauser M, Eidherr H, Wadsak W,Raderer M, Trattnig S, Herneth A, Karanikas G. Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 2013; 23(7): 1978-1985. Go to original source... Go to PubMed...
  6. Roy P, Lee JK, Sheikh A, Lin W. Quantitative comparison of misregistration in abdominal and pelvic organs between PET/MRI and PET/CT: effect of mode of acquisition and type of sequence on different organs. AJR Am J Roentgenol 2015; 205(6): 1295-1305. Go to original source... Go to PubMed...
  7. Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, Ziegler SI, Kiefer B, Hornegger J, Block KT, Nekolla SG. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 2015; 19(1): 110-120. Go to original source... Go to PubMed...
  8. Beiderwellen K, Geraldo L, Ruhlmann V, Heusch P, Gomez B, Nensa F, Umutlu L, Lauenstein TC. Accuracy of [18F] FDG PET/MRI for the Detection of Liver Metastases. PLoS One 2015; 10(9): e0137285. Go to original source... Go to PubMed...
  9. Beiderwellen K, Gomez B, Buchbender C, Hartung V, Poeppel TD, Nensa F, Kuehl H, Bockisch A, Lauenstein TC. Depiction and characterization of liver lesions in whole body [18F]-FDG PET/MRI. Eur J Radiol 2013; 82(11) e669-675. Go to original source... Go to PubMed...
  10. Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys 2015; 2(1): 21.doi:10.1186/s40658-015-0125-0. Go to original source... Go to PubMed...
  11. Tatsumi M, Isohashi K, Onishi H, Hori M, Kim T, Higuchi I, Inoue A, Shimosegawa E, Takeda Y, Hatazawa J. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT. Int J Clin Oncol 2011; 16(4): 408-415. Go to original source... Go to PubMed...
  12. Gavra M, Syed R, Fraioli F, Afaq A, Bomanji J. PET/MRI in the Upper Abdomen. Semin Nucl Med 2015; 45(4): 282-292. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.