Ces radiol. 2017, 71(2):116-125 | DOI: 10.55095/CesRadiol2017/015

Image quality comparison of angiography systems from four major manufacturersOriginal article

Lucie Súkupová1, Jan Rydlo2, Ondřej Hlaváček2, Daniel Vedlich2, Antonín Krajina3, Karel Nedvěd4, Tomáš Vávra5, Jan Chaloupka6, Jan H. Peregrin2
1 Úsek ředitele, IKEM, Praha
2 Pracoviště radiodiagnostiky a intervenční radiologie IKEM, Praha
3 Radiologická klinika LF UK a FN, Hradec Králové
4 Radiodiagnostické oddělení, Nemocnice Pardubického kraje, a.s., Orlickoústecká nemocnice, Ústí nad Orlicí
5 Radiologická klinika FN a LF UP, Olomouc
6 Klinika radiologie a nukleární medicíny FN, Brno

Objective: The aim of the study was to produce a methodology enabling comparison and assessment of images from four angiography systems with the clinical setup, under conditions simulating patients with severe obesity.

Methods: Patients with severe obesity were simulated by 34 cm of PMMA in combination with a dynamic and static phantom, which included objects used for low and high contrast resolution assessment. Images used for comparison were obtained from four angiography systems in cine and fluoro mode.

Results: Under conditions simulating patients with severe obesity, high tube loading was required. Various exposure parameters combined with post-processing produced images of different quality. Images of systems A and C suffered from noise more than images from systems B and D. All the systems provide images of significantly different image quality when obtained using a dynamic or static phantom. Mainly the system A, where motion blurring due to the pulse length was observed. Dose per image was quite low for system C, but unfortunately at the expense of higher noise. The system B provides quite good low contrast resolution and low noise when compared with all the other systems.

Conclusion: The assessment of image quality of all the images showed different image quality. Some of the systems might be more useful for patients with severe obesity than others. But the results do not say anything about image quality for patients of small and normal size.

Keywords: angiography, dynamic phantom, image quality, obese patient

Accepted: March 30, 2017; Published: June 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Súkupová L, Rydlo J, Hlaváček O, Vedlich D, Krajina A, Nedvěd K, et al.. Image quality comparison of angiography systems from four major manufacturers. Ces radiol. 2017;71(2):116-125. doi: 10.55095/CesRadiol2017/015.
Download citation

References

  1. American Association of Physicist in Medicine. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems. Report of AAPM Task Group 125. American Association of Physicists in Medicine 2012.
  2. Súkupová L. Možnosti snížení dávek rentgenového záření pacientům a lékařům v intervenční kardiologii. Interv Akut Kardiol 2015; 14(4): 158-163.
  3. Lin PJP. The operation logic of automatic dose control of fluoroscopy systém in conjuction with spectral shaping filters. Med Phys 2007; 34(8): 3169-3172. Go to original source... Go to PubMed...
  4. Súkupová L. Expoziční parametry pro skiagrafický a skiaskopický mód angiografického systému. Ces Radiol 2013; 67(3): 232-237.
  5. Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH. Diagnostic radiology physics: A handbook for teachers and students. International Atomic Energy Agency. Vídeň 2014.
  6. Toshiba's newest advanced image processing technology brings clinical advantages to interventional imaging. Dostupné z: goo.gl/l4Tx8M
  7. Philips AlluraClarity: Enhancing image quality and reducing dose. Dostupné z: http://www.mdbuyline.com/philips-alluraclarity-enhancing-image-quality-reducing-dose/
  8. CARE+CLEAR. Improving image quality and optimizing deso in every Artis system. Dostupné z: https://www.healthcare.siemens.cz/angio/innovations-technologies/care-clear
  9. International Atomic Energy Agency. Image quality in cardiac angiography. Training material on radiation protection. L 8.1.
  10. Tapiovaara M. Objective measurement of image quality in fluoroscopic X-ray equipment: FluoroQuality. STUK-A196, 2003.
  11. Aichinger H, Dierker J, Joite-Barfuss S, Säbel M. Radiation exposure and image quality in X-ray diagnostic radiology: Physical principles and clinical applications. Berlin, Heidelberg: Springer-Verlag 2012. Go to original source...
  12. Anderson JA, Wang J, Clarke GD. Choice of phantom material and test protocols to determine radiation exposure rates for fluoroscopy. RadioGraphics 2000; 20: 1033-1042. Go to original source... Go to PubMed...
  13. X-ray mass attenuation coefficients. NIST Physical Measurement Laboratory. Dostupné z: http://www.nist.gov/pml/data/xraycoef/index.cfm
  14. Kachelriess M. Understanding image quality and radiation dose in MDCT and CBCT. European Congress of Radiology, Vídeň 4.-8. 3. 2015.
  15. Lanca L, Silva A. Digital imaging systems for plain radiography. New York, Heidelberg, Dordrecht, London: Springer 2013. Go to original source...
  16. Davidson RA. Current post-processing methods in digital radiography. Chapter 5. PhD thesis Radiographic contrast-enhancement masks in digital radiography. The University of Sydney 2006.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.