Ces radiol. 2022, 76(4):249-255 | DOI: 10.55095/CesRadiol2022/029

Experience with the use and processing of data from magnetic resonance flow measurements with the 4D Flow sequence

Radek Galabov1, Kateřina Škardová2, Radomír Chabiniok3, Tomáš Oberhuber2, Radek Fučík2, Pavel Eichler2, Jan Kovář2, Petr Pauš2, Aleš Wodecki2, Jaroslav Tintěra1
1 IKEM, Praha
2 Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha
3 UT Southwestern Medical Center, Dallas, TX 75390

The goal of this paper is to inform about the 4D Flow sequence, its advantagesand disadvantages. 4D Flow examination allows to assess flow rate and otherflow parameters in the volume of interest retrospectively. However, it isexpensive in terms of time and postprocessing. An in-house software may benecessary, as commercial programs remain costly. They offer a number offunctionalities and data corrections. Their segmentations tools, however,remain relatively limited. Low spatial resolution and long data acquisitionare the primary limitations of the sequence.

Keywords: 4D Flow, aorta, phase contrast

Published: December 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Galabov R, Škardová K, Chabiniok R, Oberhuber T, Fučík R, Eichler P, et al.. Experience with the use and processing of data from magnetic resonance flow measurements with the 4D Flow sequence. Ces radiol. 2022;76(4):249-255. doi: 10.55095/CesRadiol2022/029.
Download citation

References

  1. Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1982; 1(4): 197-203. Go to original source... Go to PubMed...
  2. Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 2015; 17(1): 71. https://doi.org/10.1186/s12968-015-0172-7 Go to original source... Go to PubMed...
  3. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll C-J, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17(1): 72. Go to original source... Go to PubMed...
  4. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012; 36(5): 1015-1036. doi: 10.1002/jmri.23632 Go to original source... Go to PubMed...
  5. Fučík R, Galabov R, Pauš P, Eichler P, Klinkovský J, Straka R, Tintěra J, Chabiniok R. Investigation of phase-contrast magnetic resonance imaging underestimation of turbulent flow through the aortic valve phantom: experimental and computational study using lattice Boltzmann method. Magma (New York, N.Y.) 2020; 33(5): 649-662. https://doi.org/10.1007/s10334-020-00837-5 Go to original source... Go to PubMed...
  6. Browning J, Hertzberg J, Schroeder J, Fenster B. 4D Flow Assessment of Vorticity in Right Ventricular Diastolic Dysfunction. Bioengineering 2017; 4: 30. https://doi.org/10.3390/bioengineering4020030. Go to original source... Go to PubMed...
  7. Chabiniok R, et al. Flow Analysis in Cardiac Chambers Combining Phase Contrast, 3D Tagged and Cine MRI. Functional Imaging and Modeling of the Heart 2013, Lecture Notes in Computer Science, vol 7945. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-38899-6_43 Go to original source...
  8. Santelli C, Loecher M, Busch J, Wieben O, Schaeffter T, Kozerke S. Accelerating 4D flow MRI by exploiting vector field divergence regularization. Magn Reson Med 2016; 75(1): 115-125. doi: 10.1002/mrm.25563 Go to original source... Go to PubMed...
  9. Landajuela M, Vidrascu M, Chapelle D, Fernández MA. Coupling schemes for the FSI forward prediction challenge: Comparative study and validation. Int J Numer Meth Biomed Engng 2017; 33: e2813. doi: 10.1002/cnm.2813. Go to original source... Go to PubMed...
  10. Chapelle D, Fragu M, Mallet V, et al. Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med Biol Eng Comput 2013; 51: 1221-1233. https://doi.org/10.1007/s11517-012-0969-6 Go to original source... Go to PubMed...
  11. Töger J, Zahr MJ, Aristokleous N, Markenroth Bloch K, Carlsson M, Persson PO. Blood flow imaging by optimal matching of computational fluid dynamics to 4D-flow data. Magn Reson Med 2020; 84(4): 2231-2245. Go to original source... Go to PubMed...
  12. Klemens F, Förster B, Dorn M, Thäter G, Krause MJ. Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods. Comp Math Appl 2020; 79(1): 17-33. Go to original source...
  13. Klemens F, Schuhmann S, Guthausen G, Thäter G, Krause MJ. CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification. Computers & Fluids 2018; 166: 218-224. Go to original source...
  14. Wong J, Chabiniok R, Tibby SM, Pushparajah K, Sammut E, Celermajer D, Giese D, Hussain T, Greil GF, Schaeffter T, Razavi R. Exploring kinetic energy as a new marker of cardiac function in the single ventricle circulation. J Appl Physiol 2018; 125: 889-900. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.